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Generation of unpredictable time series by a neural network
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A perceptron that “learns” the opposite of its own output is used to generate a time series. We analyze
properties of the weight vector and the generated sequence, such as the cycle length and the probability
distribution of generated sequences. A remarkable suppression of the autocorrelation function is explained, and
connections to the Bernasconi model are discussed. If a continuous transfer function is used, the system
displays chaotic and intermittent behavior, with the product of the learning rate and amplification as a control
parameter.
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For every prediction algorithm that maps a binary timelytically if the weights have only one Fourier compongsik
series onto a binary output, there is a sequence for which it In Ref.[1], a variation of the BG was introduced in which
gives 100% wrong predictiongl]. This sequence can be the next bit of the sequence is the opposite of the percep-
constructed easily by having the algorithm predict the nextron’s output, and the network learns the sequence according
bit in the time series and continuing the series with the opto the Hebb rule, with a learning ratg
posite of the prediction. Of course, this sequence will only
make one given algorithm with one _giyen set of initi_al pa- S = —sgnixt-wh): 1)
rameters fail completely. However, it is still interesting to
compare the properties of such an antipredictable sequence
with one that can be predicted with good success by the same W =W (7/N) ST IXE (2
algorithm. We will study the statistical properties of the time

series generated by one particular prediction machingye call this system confused bit generat®BG), because

namely, a perceptron using the Hebb learning rule. the perceptron is told that its output was wrong no matter
The perceptron is the simplest type of feed-forward neuraly 4t it predicted.

network[2]. It consists ofN input units that are connected to

one output unit byN synaptic weightsv;, i=1,... N. An

input vectorx= (x4, . .. ,Xy) is mapped onto an output by A. Dynamics of the weights

a sigmoidal function of the scalar product efandw: o Geometrically,w makes a directed random walk on an
=f(={'xw;), wheref(x)=sgn() is used for the so-called N-dimensional cubic lattice: each component of the learning
simple perceptron, and the error functb(x)=erf(8x) or  step is= 5/N. Thus, while the values of the weight compo-

the hyberbolic tangent tanBX) with an adjustable amplifi- nentsw; are real numbers, they can only take discrete values
cation 8 are common choices for the continuous perceptronwioi ny/N, withn=0,1,2 . .. once the initial valuesvio are

In Sec. | a sequence generated by a simple perceptron thgkosen.

“learns” the opposite of its own output is examined,  Fyrthermore, each learning step has a negative overlap
whereas in Sec. Il a continuous perceptron is used; the difyjth the currentv, which prevents a boundless growth of the
ferences between the two cases are highlighted. vector. The norm of the weight vector fluctuates around an
equilibrium value that can be estimated by replacingith a
random vector whose components have a variance of 1, tak-
ing the square of Eq.2) and applying the usual formalism

) ) _ for online learning 6]:
Perceptrons have been used for generating binary time

. CONFUSED BIT GENERATOR

series in a simple iteration that was named bit gene(&G) 1 el ot 29, . -

[3-5]: the patternx! at timet is anN-bit window of a binary (W W -whwh = — W<X -W'sgn(x-w'))

time seriesS, x'=(S', ..., S""N*1), S'e{—1,1}. The series

is generated by the output of the perceptrSh:!=sgnx! 7?

-w). For a fixedw, the sequence relaxes into a limit cycle + m(xt'xt% 3

whose average length increases more slowly than exponen-

tially with N. Short cycles with a length<<2N are more

likely than longer ones, and the Fourier spectrum of the seitroducing a time scale with da=1/N and averaging over
guence is dominated by one frequency which is also promix, this becomes a deterministic differential equation for the
nent in the weight$3,4]. The cycles can be calculated ana- normw of w in the thermodynamic limifN— oco:
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dw \/5 7 0.008 . : .
da~ Nz 2w @
The attractive fixed point of this equation 8= /7/8% 0.006 | .

=0.6267. However, using the time series generated by the
perceptron as patterns, simulations give a slightly different
value ofw~0.5667, independent oN (this was already ob-
served in Ref[1]). Two possible violations of the assump-
tions for which the analysis in Rdf7] guarantees agreement
with analytical predictions must be considered: first, the time
series patterns generated by the CBG do now follow a uni-  0.002 - ]
form distribution(see Sec. | E Second, they are not drawn
independently from the weight vector and previous patterns.
Simulations in which a perceptron was given patterns drawn 0.000 . . .
randomly from a distribution as described in Sec. | E yield a o 100 200 300 400
norm w that is compatible with the analytical value of t
0.6267y. This indicates that temporal correlations are re-
sponsible for the deviations. The learning rat@®nly sets a
length scale, but does not influence the long-term behavior
the system.

In a similar fashion, the autocorrelation of the weight vec-
tor can be calculated using the assumption of random pafN-dimensional weight space, measured in unitgtfl. This
terns: point is important, and will be exploited in the following

paragraphs.

o 0.004 | 1

FIG. 1. Distribution of transient lengths of a CBG with
d}l=8. The small probability of shott indicates that only a small
fraction of state space is part of a cycle.

too ATy 2 4 T)

(wWw Ty =w ex;{ —N/ (5)
B. Cycles and transients

In some casegsee Sec. | § it is useful to assign an indi-

vidual learning raten; to each weight component;. A

short calculation shows that the mean square norm of eac

weight component is proportional to its learning rate:

The CBG is a deterministic map with a discrete, finite
tate space. This means that it eventually falls into a cycle of
me length: both sequence and weights repeat dfteps,
e, w=wt or aIternativerC}=0 for 1<j<N after |
. steps. This means thatmust be divisible by 4, since only
(w?)= \[gﬁl‘ /Z sz_ (6)  sequences with mod 4=0 can have an autocorrrelation of
] 0. Also, a lower bound fol can be given: for théth auto-

A component with a higher learning rate thus has a stronge(forrela_t'on yalqe, one obtang'z ! 7,&0; tlhereforel =~ N.' By
naming indices, one findsC;=C,;_; for periodic

influence on the output. This also leads to a faster decay df i X
the autocorrelation: sequences. If<2N, one thus obtain€;=0 for all j<I. In

Ref. [8], it was conjectured that such a sequence does not
z exist except for any exceptl =4. If this is true,| >2N must
7;

: - n 4 hold for N>3.
<WitWiHT>= Zexp S A (7) An upper bound on the cycle length can be found by
i E 7 77 estimating how many states in weight space the weight vec-

] tor can take. Assuming that it stays inside Mutlimensional

) ) ) hypersphere of radiusw;=0.566p and volume V
The dynamics of the weights can be linked to the the auto— NN/ (N/2+1) , we can divide that volume by the

correlation functiorC} of the sequence, defined by volume of a unit cell, ¢/N)N, and expand using Stirling’s
t equation. We find that the number of possible states in
C;:E Sig-i ®) weight space scales approximately like 3/48N. Combin-
=] ' ing this with 2¥ possible sequences gives 1%.9N possible

) ) states of the system.
wheret is the number of patterns summed over. Simply add  sjmulations show that not all of these states are part of a
t update steps according to EQ): cycle: starting from random initial conditions, there is a tran-
sient whose median length scales approximately like™2.04
) The transient distributioriFig. 1) shows that not all states
have the same probability of being part of a cycle: the prob-
ability for a very short transient is smaller than that for a
Each vaIueC} for 1=<j=<N corresponds to the distance of longer one, which implies that some sort of annealing occurs
the weight vector from its starting point along one axis in theduring the first steps. Simulations were done with random

t
w}=w?+i§l (7IN)S'ST=wl+(7/N)C!.
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FIG. 4. Autocorrelation functiorC}/t of a CBG with N=50,

FIG. 2. Distribution of period lengths of a CBG witii=10 on averaged over=2x 1P patterns.

linear and logarithmiginse) scales. The initial weights and se-
quence were random. Alfs are divisible by 4, and>2N. Error
bars denote the standard error.

C. Autocorrelation function and the Bernasconi model

The autocorrelation of the sequence shows some pecu-
liarities, as seen in Fig. 4. As explained, the firstalues

initial sequences and random initial vectors normalized to . L t
w=0.566. correspond to components @f. Sincew is finite, C; is

The distribution of cycle lengths found in simulations bounded for 1j<N, ie., it does not grow like\t as it

shows the expected featurésee Fig. 2 a minimum cycle would for a random sequence. The values o j<2N
lenathl > 2N apnd o cvle len thbt?].at are not di 's'bl)(/a b show negative correlations that grow linearly witfor even
9 y 9 ISl y j, whereas they are compatible with a random sequence for

4. There is a d|st|nct. maximum near the minimum CyCIeoddj. Between A and 3\, correlations are positive for even
length and a proad distribution that falls off slightly fasterj and 0 for oddj. These effects appear for &llin both the
than exponentially for largé. The average of scales ap-  iransient and the cycle, as long as the cycle length is much
proximately like 2.2, as seen in Fig. 3. The fact that the larger thanN.
largest! that is found scales exponentially witih suggests Bit series with low autocorrelations are of interest in
that there is an eXponential number of different CyCleS. mathematiCS, and have app”cations in Signa| proceiﬂ]’]g
It is therefore interesting to know whether the CBG gener-
ates sequences with autocorrelations significantly lower than
10° . : . for random series. Two measures are commonly used in the

- |~29o1 literature: for periodic sequences of lengttan energy func-
R 2N 1 tion (which is studied in the so-called Bernasconi model for
O <I>, simulation periodic boundary conditions0]) can be defined by
. mR N S|'mulat|.on 1 1 )
10" ¢ O e SiMmulation 3 2 S
Ho= 2, (C)?=2, SR (10)
i=1 i=1\i=1
A 10° | N 1
v o Results on the ground states of this Hamiltonian can be
R o ° 5 found in Ref.[8]. By trial and error, initial conditions for the
107 ¢ 0% o © o E CBG can be found which yield cycles slightly larger than
o 8 - g.0.g-0-g-H-a-sE 2N, for which all value ofC} except one are 0. However,
10" F o 8n= E even for the best sequences we fourg,was larger than the
: known ground state energies by at least a factor of 2.
10° , , . The original model does not use periodic boundary con-
0 5 10 15 20 ditions: in a sequence of lengfh only the sum ovep—j
N different terms with a lag of can be calculated. The energy

is therefore given b
FIG. 3. Average, smallest, and largest cydlésund in simula- 9 y

tions with 1000 random initial conditions for each valueNofThe p—1
full line is an exponential fit to the data f&¢>9, and the dotted H.,= E (Cpfi)z (11)
line denotes the theoretical lower boundlof2N for N> 3. P i=1 !
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(note the summation limijs The so-called merit factoF 2
introduced by Golay11] is defined by

2

p

F= or

(12
15t

A merit factor of 1 is expected for a random sequence; lower
autocorrelations yield higheF. The theoretical limit for W -
Iargep is conjgctured 'Fo be a_boEtz 12[10], Whe_reas opti- - o simulations, N=100
mization routines typically find sequences with<®& <9 £ theory
(see Ref[12], and references thergiand exact enumeration 17 1
for smallp suggests lim._,..F =9.3 for the optimal sequence
[13].

To estimate the merit factor of sequences generated by th
CBG analytically, we solve Eq(9) for C!?, and use the

autocorrelation of the weights given by H&): 0.5 ' : : .

N2 PN
<(CF_])2>=?<W?2+W}2— 2wiw?)

4p-
1*’“(77

FIG. 5. Merit factorF as a function of scaled sequence length
p/N, compared to Eq.15). Error bars denote the standard deviation

of F for N=100, not the standard error.
. (13

learning rate continuously toward components with smaller
The energy can be expressed as a sum or approximated by @lices. Unfortunately, even this optimization does not im-
integral in continuous variables=p/N and 5=]/N. Since  prove the merit factor beyon&=1.74 in theory andF)
Eq. (13) only holds for I=<j=<N, C]P’izz p—j must be used = 1.86 insimulations. This is still a lot worse than the results

for j>N. We obtain the expression of other optimization methodgl0,12, so the CBG is not a
competitive generator of low-autocorrelation sequences.
-l L 4 p—j Nevertheless, it has some interesting possibilities:
Hap= >, NZ|1- exp( __T”
=1

D. Shaping the autocorrelation function
~f sz{l— exd — (4/m)(a—B)]}dB Being able to suppress autocorrelations, the CBG is also
o 4 capable of controlling the shape of the autocorrelation func-
- - 4 tion in the long-time limit. Using Eqg6) and(9) in the limit
=N2—[a— _[1_ exp{ — _a> ] for j<N wherew®—0 and for non-negative learning rates, one can
4 4 ™ obtain the inverse relation between the square of the autocor-
(14) relation function C:})2 and the corresponding learning rate

7j -

nd
H =N2(3[1—z exp(i(l— ))—exp(—i )J m
ap 4 4 T “ ¢ (|C}|>=\/;
1
2

(a—1)2) for j>N. (15

a

(16)

Thus any desired shape of the autocorrelation function is
) ) ) ) ) _achievable by using the appropriate profile fgrwhich can
The corresponding merit factor is compared to simulations ithe extracted from Eq(16). The high performance of the
Fig. 5: Egs.(14) and (15) give qualitatively correct results, CBG as a producer of sequences with specific desired shapes
but differ from the observed values by roughly 10%. Theof the autocorrelation function is observed in simulations.
feedback mechanisms of the CBG cause a faster dec@y of This feature of the CBG is demonstrated in Figs. 6 and 7,
than predicted for random patterns. where both exponential and polynomial profiles of the auto-
We observed in Sec. | A that individual learning rates cancorrelations are successfully generated. The slight deviations
makeC} decay faster for somgand slower for others. The from the target profile are probably due to a violation of the
search for a minimaH,, can be written as an optimization assumption of random patterns. Simulations are done for a
problem in the continuous functiony(B), where #; CBG with 30 input units. The autocorrelations are calculated
= 7(j/N). Solving this problem with a variational approach, for time windows of 100 000 bits, and are averaged over
one finds that it is sensible to give the last 41% of thel000 such successive windows. Checking a wide variety of
weights a learning rate and norm of zero, and increase thghapes, the CBG exhibits a decent capability of achieving the
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FIG. 6. Profile of the average absolute value of the autocorrela-
tion function|C;| which was achieved by a CBG with=30 input FIG. 8. Histogram of eight-bit subsequences generated by a
units usingz; = exp(—2j/N) (dashed curve The solid curve stands CBG with N=50, averaged over®10° steps. The axis gives the
for the desired profile, |Cj|=Aexp(/N), where A probability of a subsequence multiplied b§ @ give an average of

=J#8J(e = 1)/(e"?N-1). 1.

expected profiles. It could be used as an alternative mech short time scale. On the other hand, choosing a given shape
Xp P : ) . for long time averages of; still allows for many realiza-
nism for generating colored binary sequences using Iocq ons of the sequence

rules instead of nonlocal mechanisms auch as Fourier trans-
forms.

The limited use of the CBG in generating sequences with
a high merit factor may be related to phase space arguments: The structure irC; shows that the CBG does not generate
as seen in Sec. | B; the CBG can still generate exponentiallg random sequence. This becomes more obvious in a histo-
many different time series depending on initial conditions,gram of subsequences generated by the system. Figure 8
whereas there are very few sequences with the higheshows the probability distribution of eight-bit substrings
achievable high merit factofsee Ref[14] for the density of  from a run of a CBG withN=50, encoded as decimal inte-
states with cyclic boundary conditionsThe mechanism of gers. Some strings are strongly suppressed, most notably 0
the CBG allows for manipulation of the autocorrelation func- (binary 0000000§) 85(0101010}, 170(10101010, and 255
tion only if the constraints on the desired sequence are natt111111}. Other sequences with a below-average likeli-
too strong, such as suppressing all of the elemen@ah a hood also correspond to “simple” sequences, like 15
(0000111} and 51(0011001}. Continued simple sequences
give high values of some components of the autocorrelation
function, which is unlikely as explained above.

The shape of the histogram is the same for\aih both
the transient and the cycle. Howevemust be much larger
than the number of bins in the histogram. The amplitude of
the deviations from uniform distribution again goes lik&l1/

Ordering histograms in descending rank order often re-
veals insights into the underlying processes and phase space
structure(see, e.g., Refd15,16)). In our case, the rank or-
dered histogram does not show a power law or other univer-
sal behavior, as seen in Fig. 9.

One way to explain this histogram is by finding the sta-
tionary distribution for a biased random walk on a DeBruijn
graph, as done in Reffl16,17: a subsequenc®is followed
by 1 with probabilityps, and by 0 with probability - pg. It
is possible to reproduce the histogram of the CBG accurately
this way; however, one has to take the transition probabilities

FIG. 7. Profile of the average absolute value of the autocorrelaps for each subsequence from simulations of the CBG. There
tion function|C;| which was achieved by a CBG witd=30 input  is no obvious way of calculating these analytically, and tak-
units usingz;=j/N (dashed curve The solid curve stands for the ing random transition probabilities does not reproduce the
desired profile|C;|=2.427/j/N. shape of Fig. 9.

E. Distribution of generated sequences

15 T T

10

IC(K)!
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1.5 ' ' ' ' w andg [18]. This attractor is robust to noi§&9]. The time
series displays chaotic behavior only for very special choices
of w and B (“fragile chaos”) if the transfer function is
monotonic, and for generic initial condition$‘robust
chaos”) only if it is nonmonotonic[20]. We will compare

Tr ] these properties to those of the CSG.
a:‘ A. Mean-field solution for w
a Similar to the CBG, the weight vector of the CSG pre-
05 L i forms a directed random walk near the surface of a hyper-

sphere of radiusv. Unlike the CBG, the length of the learn-
ing steps depends on the magnitude of the output, which in
turn depends ow and the outputs in previous time steps. To
find an approximate solution to this self-consistency prob-
0 , . . . lem, we will first ignore correlations between patterns and

0 1000 2000 3000 4000 weights, and treat the patterns as random and independent. In

k this approach, the inner fieldis a Gaussian random variable
_ _ of mean 0 and varianoe®S?, whereS?=(S'?), is the mean
_ FIG. 9. Frequencies of 12-bit subsequ_ences generated by a CB&quare output of the system.

W|th N.:50, ordered by rgnk and normalized to an average of 1 The normw is found by taking the square of E¢L9),
(solid line). The frequencies reproduced by a Markov process are
also displayeddotted ling, but are indistinguishable from the first

2
curve. Wt+12=Wt2—W7]Wt -xterf( Bxt-wt) + %S‘zx‘o xt, (19

The CBG may be considered the simplest case of a
sequence-generating perceptron that deterministicalljind averaging over the input patterns. The self-overlags
changes its direction. The sequence generated by it, whil@n the averag&lS?, so the fixed point ofv is given by
complex, has many properties that can be understood at least
qualitatively, especially those that can be linked to the auto- 2(h erf(h))=7S". (20
correlatlor_1 function. It is not .by any standard a S“"ltls'fymgThe average on the left hand side can be evaluated, and leads
random bit sequence, and while results derived from the as-
sumption of random patterns are usually qualitatively cor-
rect, the exact values have to be modified.

2qQ2
i L = 7]84, (21)
Il. CONFUSED SEQUENCE GENERATOR Jr 1+282w2s?
The simplest generalization of the CBG to a continuousor
perceptron replaces the sign function in E2).by a continu-
ous sigmoidal function, , TBNS+ S\ \16+ B2 PSP
' we= 168 . (22

Stl=—erf WiS_i.1|=—erf(Bw' x")=—erf(BhY), e
szl St (Bw-x) (Bh) Let us now turn toS?. The probability distribution oS
(17) itself is rather awkward, since it involves inverse error func-
tions, and its slope diverges 8t *+ 1. However,S? can be

W It zs”lx‘ (18 easily calculated by using the distribution laf
N ) h2
ity | ificati t (=] erf(Bh)(2mw?s?) " Y%exp — dh

where the only new quantity is the amplificatign andh' is . oW2S2
an abbreviation ofv'- x!. The generation of a time series by w
a continuous perceptron with fixed weights was studied in a 2 282W2S?
number of publicationg18-20, in which the system was = —arcsir(ﬁ). (23
called the sequence generatsGen. We will call the map- m 1+2p8°w*S
ping defined by Eqg.17) and(18) a confused sequence gen- ) ) )
erator(CSG. Pluggingw?(»,,S?) from Eq. (22) into (23), and solving

The SGen with fixed weights has a critical amplification numerically, one obtains a self-consistent solutionSrA
B. that depends omv, below whichS=0 is the attractive closer look at the equations reveals that if a new quantity
fixed point. Aboveg., the zero solution becomes repulsive, ¥= 78 is introduced, onlyy enters into the equation f&?,
and the SGen generates a periodic or quasiperiodic time sandw? is of the formw?= 7? w?(y), so only one curve must
ries with an attractor dimension of O or 1 for most choices ofbe considered. This is intuitive, since a highgeventually
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FIG. 10. Mean-field solution of the CBG, compared to simula- numerical solution of Eq926) and (27).
tions with N=400.

) ) componentw; connects the corresponding input urjtnot
leads to a highew, which has the same effect & as  only to the output but also to othen—2 additional input
having a smallew, but multiplyingw-x by a higher factor ynits.

. _ AssigningA; ; i=1,..m—2 to be the labels of then—2
The map defined by Eqg17) and (18) always has a additional input units participating in thigh interaction, the

trivial solution S=0. Only for a sufficiently highy>y. are  dynamics of a CSGm is given by
the outputs high enough to sustain a nonvanishing solution.

Note thatS=0 is always an attractive solution for ajt 1 N Hl_Am_z 1A

<, but its basin of attraction becomes smaller for larger STi=—erf ,3_21 w;S Jiﬂl S b, (24
The numerical solution of Eq$22) and (23) shows that )

the system undergoes a saddle-node bifurcation at m-2

v.=5.785, which is in good agreement with simulations. W}+1:W}+%St+lst+l—jiﬂl StH1-Aj, (25)

Above vy., two new fixed points exist, only one of which is
stable. While forS?(y) excellent agreement is found be- o ) _
tween theory and simulatiorsee Fig. 18 w2(y) shows A similar calculation under the same assumptions used to
quantitative differences which are caused by correlations bexield the solution of the original CSG gives the following
tweenx andw: the mean square overldpx-w)?2) turns out ~ general set of equations:

to be (1.22-0.01w?S? instead ofw?S?, as expected for el ) —
random patterns. This causes a factor of roughly 0.82 be- w2=77'877 S D4 5\ 16+ 77 7*S™

, (26
tween the theoretical and observed valuevdfseen in Fig. 168 (26)
10). The same factor is found in the CBG. For large S?

goes to 1(as it should, since the system is identical to the o 2 [ 2p2w?s(m-1)

CBG if y=0), and the theoretical prediction fov goes to (§%)=jarcsi 1+2p82w2s2(m=1) | (27)

/87, just like in the CBG.

Numerically solving Eqs(26) and(27) for a large range aofn
B. CSG of themth degree—CSGn values, both the bifurcation poing. and the first nonzero
Multispin interactions were studied in fields like neural values of S> and w? were found to increase witm. For
networks[21], low-autocorrelated sequendg®)] and error- M—, one can easily show that.—, while for the non-
correcting code§22]. The idea to include multispin interac- vanishing solutiorw?—1 andS*—1 . Aiming to study the
tions in our work originated as an attempt to improve theasymptotic behavior d&* and y, in the largem limit, we set
suppression of the autocorrelation function achieved by th&*=1— ¢, and find thate must decay to zero at least asnl/
CBG. The existence of four-spin interactions in the Ber-in order for a nonzero solution to exist. This inverse relation
nasconi model implies that a CBG with multispin interaction betweene andm derivesS™ terms, since (1 €)™—0 unless
might be useful in the construction of low-autocorrelated se<<1/m. InsertingS*=1— e into Eqgs.(26) and(27), and ex-
guences. However, it turns out that a CBG with multispinpanding the resulting expression to a power series, ithe
interactions suppresses the corresponding multispin correlénverse relation betweenandm leads to linear increment of
tions instead. v. as a function ofn. The numerical solutions of the system
In this section we apply multispin interactions to the CSG,in the largem regime support the linear behavior ¢f as
and define the CS@, namely, a CSG in which each weight derived from the aforementioned analy&isg. 11).
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FIG. 12. Mean-field solution of the CSG3, compared to simula-«one-step Lyapunov exponent” max(l() (see Sec. Il E

tions with N=2000.

ther case, the system shows chaotic behavior for sufficiently
(?ong times to obtain stable numerical results—for example,
for N=20 andy=7.0, the average survival time is of the
order of 16 steps.

If v is larger than some critical value that depends\pn
the chaotic transient can eventually end in a cycle that is
C. Autocorrelation function related to a possible cycle of the discrete CBG. By “related”

> .
Relation(9), that links the autocorrelation function to the W& Meéan thas in the CSG is very close ta-1, and that
weights, still holds for the CSG. Since the weight vector isClIPPIng the sequence to the nearest value-df would give
bounded in the CSG as well, the same argument can be givéHe equivalent at.tract.or of the CBG. More different cycles
for the first suppression of the firbt values of the autocor- P€come stable with higher, however, the cycle lengths are

relation function. Correspondingl;?/p is almost indistin- usually of order 2—short cycles are apparently more likely
guishable from that of the CBG shown in Fig. 4. to become stable than cycles whose length is of order 2

At amplificationsy slightly below the lowesty for which
the first cycle becomes stable for for a gividnintermittent
behavior is observed: bo® andw!' stay near a cycle for an

The CSG can be seen as a nonlinear mapping that mapstended number of stegtypically several thousand steps
the vectorx'@w' onto x'"*@w'*1. This is in contrast to for N=6), before returning to chaotic behavior for a similar
previous work on the SGe[R2], where the weights were time. An example of this is given in Fig. 13.
fixed and could be considered parameters of the model rather
than dynamic variables. The only real control parameter of E. Stability and Lyapunov exponents
this mapping isy. Since both the sequence and the weights . - . .
now live in a high-dimensional space of real numbers, the The ter_m chaqnc was used in Sec. |1 D to descrl_be the
CBG can display a wide variety of behaviors, depending or/fégular time series generated by the CBG. We will now
N and y: show that th.e. system is in fa_ct chaotic in the strict sense.

For y<w., the zero solution is the only attractor, and the The sensitivity of trqjector|¢§ .Of the m.ﬁEEqS' (17) and
system will quickly reach=0 and stop developing. For (18)] to small changes in the initial conditions can be tested

slightly abovey,, an irregular-looking time series with the PY calculating the eigenvalues of the Jacobi matrix:

the simulation results for a system witi= 3. This harmony
between analytics and simulations is observed for langas
well.

D. Cycles and attractors

statistical properties calculated in Sec. Il A, and displayed in ot ot
Fig. 10, is generated. However, the zero solution is still at- b !
tractive, and after some time the system will drift close to it ax} (?W}
and stay there, i.e., the irregular behavior is due to a chaotic M= 1 1 (28)
transient rather than a proper chaotic attractor. IW; IW;
The survival time on the transient increases dramatically ax! awt

with increasingN and . It is hard to decide from numerical
results whether the average survival tiftg diverges with a
power law (ts)ec|y—y4|~?), as one usually finds in sce- This is to be understood as &AX 2N matrix with indicesi
narios where a chaotic transient becomes a chaotic attractandj running from 1 toN. The entries of this matrix are of
[23], or whether(ts) increases exponentially witl. In ei-  the following forms:
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owttl
i _ n tot 21,2 : T T t H H
— =0~ N,ijxi exp(— B<h?). eigenvalues\; of II,_;M" (of course, the trajectory is de-
IW;j termined using the full nonlinear maprhe Lyapunov expo-

nents are then defined as
If |Bh| is large and the transfer function is saturated, the
exponential terms in Eq29) are negligible. In that case, the = i T
upper left section oM is occupied only on the first lower M TITL(l/T)m'A' | (39
off-diagonal; the lower right section is tiéX N unity ma-
trix. Since the upper right section is identically 0, the lower The straightforward calculation of the product of Jacobi ma-
left part does not enter into the calculation of the eigenvaluegices brings many numerical problems which can be elimi-
either. nated by applying a Gram-Schmidt orthonormalization pro-
This simplified matrix hasN eigenvaluesA=0 andN  cedure to the columns of the product matrix in regular
eigenvaluesA =1. The eigenvectors of the latter span thedistances, as described in REE5]. With this procedure, it is
space of weight vectors, where small changes'tare trans-  possible to average ovéi>100N and obtain numerically
ferred unmodified tov'**. The eigenvalues\ =0 all have  stable results. The largest Lyapunov exponent is displayed in
the same eigenvector, whose only nonvanishing componerig. 14. Typically, there ar&l/2 positive exponents.
is xy, the component of the sequence vector that is rotated The Kaplan-Yorke conjecturf26] states that there is a
out att+ 1. This means that the eigenvectors do not span thegonnection between the dimensibnof a attractor of a map
whole space, and that thus the eigenvalues are not a reliabdgd the spectrum of Lyapunov exponents, which here are
measure of the propagation of a disturbance in the systemassumed to be ordered {=\,=---=\,,),
If |Bh| is small enough for the exponential terms to have
an appreciable effect, the effect on the eigenvalues is not k
easy to calculate. By using valuesfandw taken from a DKY=k+Z Nil[Nesal, (31)
run of the simulation, and numerically calculating the eigen- i=1
values, we find that typically one of the=0 eigenvalues is
changed drastically, and may have an absolute vakle wherek is the value for which¥_;\;>0 and=¥'}\;<0.
>1. This corresponds to a strong susceptibility of the newlyApplying this to the spectrum of exponents derived from Eq.
generated sequence compongpion small changes i or  (30) gives an average attractor dimension betweei hid
X. The other eigenvalues only undergo small corrections1.2N, depending slightly ony.
corresponding to the feedback of the new component to the An alternative method for measuring the largest
weights. Lyapunov exponent is to start two trajectories with infinitesi-
During the regular phases of intermittent behavior, themally different initial conditions, and propagate both of them
largest eigenvalues of the one-step matrix are significantlysing the nonlinear map. In regular intervals, we measure the
smaller than during the chaotic burstsee Fig. 13— distance between the trajectories, store it, and reset the dis-
corresponding to sequence values that are close=ta-1, tance to the initial value while keeping the direction of the
and thus a nearly saturated transfer function. distance vector. The advantage of this method is that it re-
To find the Lyapunov exponents of the méee, e.g., quires only O(N) calculations per time step, rather than
Ref. [24]), it is necessary to consider the development of @O(N?) as in the previous method, allowing one to go to a
small perturbation over a long time, i.e., to calculate themuch higher value oN.
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The results foin; are also displayed in Fig. 14: the values vanishing solution now becomes possible; only for suffi-
gained by the two methods agree well within the numericakiently large values of the rescaled amplificatiprtan non-
errors. For largeN, A, decreases with I, i.e., perturba- trivial solutions survive. The criticaj, can be calculated in

tions grow on thex time scale of online learning. a mean-field online learning calculation.
Since both sequence and weights are now continuous,
I1l. SUMMARY cycles vanish for low values of, and the trajectory is a

) ) . ~ chaotic sequence. The largest Lyapunov exponent scales like
In this paper, we have studied the properties of a timey\ for large N; the spectrum of Lyapunov exponents sug-
sequence generated by a perceptron which learns the OPP§ests high-dimensional chaos.
site of its own prediction. In the case of a simple perceptron,” At |east some cycles of the CBG reemerge as stable fixed
some properties are accessible analytically through the applisoints of the CGS above a criticalthat is different for each
cation of online learning techniques, and through the connecsyiyactor. Slightly below the smallest criticalfor a givenN,
tion between the weights and the autocorrelation function of,, intermittent behavior is observed.
the sequence. The distribution of learning rates among the Compared to the behavior of sequence-generating percep-
weight _components has a decisive influence on the statisticglyns with fixed weights, the sequence generated with chang-
properties of the generated sequence, and allows for Sg;q weights shows more a complex behavior: longer cycles,
guences with a.W|de variety of autocorrelation shapes. more randomness, and chaotic as opposed to quasiperiodic
Due to the discrete nature of the sequence and the leargpayior. It seems likely that this tendency also holds for

ing algorithm, cycles of the system are inevitable. We findgier algorithms in which the weights keep changing.
that their typical length, as well as that of the transient, grow

exponentially with the system siZé
A histogram of substrings of the generated sequence re-
veals that the sequence has significant deviations from ran- R. M., W. K., and I. K. are grateful for financial support
domness, although the deviations decrease with incredking by the German-Israeli Foundation. We thank Stephan
Replacing the sign function in the update rule by a con-Mertens, Avner Priel, and Andreas Engel for discussions,
tinuous sigmoidal function changes many of these results. Anow-how, and ideas.
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