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Generation of unpredictable time series by a neural network
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A perceptron that ‘‘learns’’ the opposite of its own output is used to generate a time series. We analyze
properties of the weight vector and the generated sequence, such as the cycle length and the probability
distribution of generated sequences. A remarkable suppression of the autocorrelation function is explained, and
connections to the Bernasconi model are discussed. If a continuous transfer function is used, the system
displays chaotic and intermittent behavior, with the product of the learning rate and amplification as a control
parameter.
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For every prediction algorithm that maps a binary tim
series onto a binary output, there is a sequence for whic
gives 100% wrong predictions@1#. This sequence can b
constructed easily by having the algorithm predict the n
bit in the time series and continuing the series with the
posite of the prediction. Of course, this sequence will o
make one given algorithm with one given set of initial p
rameters fail completely. However, it is still interesting
compare the properties of such an antipredictable sequ
with one that can be predicted with good success by the s
algorithm. We will study the statistical properties of the tim
series generated by one particular prediction mach
namely, a perceptron using the Hebb learning rule.

The perceptron is the simplest type of feed-forward neu
network@2#. It consists ofN input units that are connected t
one output unit byN synaptic weightswi , i 51, . . . ,N. An
input vectorx5(x1 , . . . ,xN) is mapped onto an outputs by
a sigmoidal function of the scalar product ofx and w: s
5 f (( i

Nxiwi), where f (x)5sgn(x) is used for the so-called
simple perceptron, and the error functonf (x)5erf(bx) or
the hyberbolic tangent tanh(bx) with an adjustable amplifi-
cationb are common choices for the continuous perceptr
In Sec. I a sequence generated by a simple perceptron
‘‘learns’’ the opposite of its own output is examine
whereas in Sec. II a continuous perceptron is used; the
ferences between the two cases are highlighted.

I. CONFUSED BIT GENERATOR

Perceptrons have been used for generating binary
series in a simple iteration that was named bit generator~BG!
@3–5#: the patternxt at timet is anN-bit window of a binary
time seriesS, xt5(St, . . . ,St2N11), StP$21,1%. The series
is generated by the output of the perceptron:St115sgn(xt

•w). For a fixedw, the sequence relaxes into a limit cyc
whose average length increases more slowly than expo
tially with N. Short cycles with a lengthl ,2N are more
likely than longer ones, and the Fourier spectrum of the
quence is dominated by one frequency which is also pro
nent in the weights@3,4#. The cycles can be calculated an
1063-651X/2001/63~5!/056126~10!/$20.00 63 0561
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lytically if the weights have only one Fourier component@5#.
In Ref. @1#, a variation of the BG was introduced in whic

the next bit of the sequence is the opposite of the perc
tron’s output, and the network learns the sequence accor
to the Hebb rule, with a learning rateh:

St1152sgn~xt
•wt!; ~1!

wt115wt1~h/N!St11xt. ~2!

We call this system confused bit generator~CBG!, because
the perceptron is told that its output was wrong no ma
what it predicted.

A. Dynamics of the weights

Geometrically,w makes a directed random walk on a
N-dimensional cubic lattice: each component of the learn
step is6h/N. Thus, while the values of the weight comp
nentswi are real numbers, they can only take discrete val
wi

06nh/N, with n50,1,2, . . . once the initial valueswi
0 are

chosen.
Furthermore, each learning step has a negative ove

with the currentw, which prevents a boundless growth of th
vector. The norm of the weight vector fluctuates around
equilibrium value that can be estimated by replacingx with a
random vector whose components have a variance of 1,
ing the square of Eq.~2! and applying the usual formalism
for online learning@6#:

^wt11
•wt112wt

•wt&52
2h

N
^xt

•wtsgn~xt
•wt!&

1
h2

N2
^xt

•xt&. ~3!

Introducing a time scalea with da51/N and averaging over
x, this becomes a deterministic differential equation for t
norm w of w in the thermodynamic limitN→`:
©2001 The American Physical Society26-1
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dw

da
52A2

p
h1

h2

2w
. ~4!

The attractive fixed point of this equation isw5Ap/8h
>0.6267h. However, using the time series generated by
perceptron as patterns, simulations give a slightly differ
value ofw'0.566h, independent ofN ~this was already ob-
served in Ref.@1#!. Two possible violations of the assump
tions for which the analysis in Ref.@7# guarantees agreeme
with analytical predictions must be considered: first, the ti
series patterns generated by the CBG do now follow a u
form distribution~see Sec. I E!. Second, they are not draw
independently from the weight vector and previous patte
Simulations in which a perceptron was given patterns dra
randomly from a distribution as described in Sec. I E yield
norm w that is compatible with the analytical value o
0.6267h. This indicates that temporal correlations are
sponsible for the deviations. The learning rateh only sets a
length scale, but does not influence the long-term behavio
the system.

In a similar fashion, the autocorrelation of the weight ve
tor can be calculated using the assumption of random
terns:

^wt
•wt1t&5w2 expS 2

4

p

t

ND . ~5!

In some cases~see Sec. I C!, it is useful to assign an indi
vidual learning rateh i to each weight componentwi . A
short calculation shows that the mean square norm of e
weight component is proportional to its learning rate:

^wi
2&5Ap

8

h i

NA(
j

wj
2. ~6!

A component with a higher learning rate thus has a stron
influence on the output. This also leads to a faster deca
the autocorrelation:

^wi
twi

t1t&5

(
j

h j

h i

p

4
expS 2

h i

(
j

h j

4

p
tD . ~7!

The dynamics of the weights can be linked to the the au
correlation functionCj

t of the sequence, defined by

Cj
t5(

i 51

t

SiSi 2 j , ~8!

wheret is the number of patterns summed over. Simply a
t update steps according to Eq.~2!:

wj
t5wj

01(
i 51

t

~h/N!SiSi 2 j5wj
01~h/N!Cj

t . ~9!

Each valueCj
t for 1< j <N corresponds to the distance

the weight vector from its starting point along one axis in t
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N-dimensional weight space, measured in units ofh/N. This
point is important, and will be exploited in the followin
paragraphs.

B. Cycles and transients

The CBG is a deterministic map with a discrete, fin
state space. This means that it eventually falls into a cycle
some lengthl: both sequence and weights repeat afterl steps,
i.e., wt5wt1 l , or alternativelyCj

l 50 for 1< j <N after l
steps. This means thatl must be divisible by 4, since only
sequences withl mod 450 can have an autocorrrelation o
0. Also, a lower bound forl can be given: for thel th auto-
correlation value, one obtainsCl

l5 lÞ0; therefore,l .N. By
renaming indices, one findsCj

l 5Cl 2 j
l for periodic

sequences. Ifl<2N, one thus obtainsCj
l [0 for all j , l . In

Ref. @8#, it was conjectured that such a sequence does
exist except for anyl exceptl 54. If this is true,l .2N must
hold for N.3.

An upper bound on the cycle length can be found
estimating how many states in weight space the weight v
tor can take. Assuming that it stays inside anN-dimensional
hypersphere of radiuswf50.566h and volume V
5wf

NpN/2/G(N/211) , we can divide that volume by th
volume of a unit cell, (h/N)N, and expand using Stirling’s
equation. We find that the number of possible states
weight space scales approximately like 5.45N/AN. Combin-
ing this with 2N possible sequences gives 10.9N/AN possible
states of the system.

Simulations show that not all of these states are part o
cycle: starting from random initial conditions, there is a tra
sient whose median length scales approximately like 2.0N.
The transient distribution~Fig. 1! shows that not all state
have the same probability of being part of a cycle: the pr
ability for a very short transient is smaller than that for
longer one, which implies that some sort of annealing occ
during the first steps. Simulations were done with rand

FIG. 1. Distribution of transient lengthst of a CBG with
N58. The small probability of shortt indicates that only a smal
fraction of state space is part of a cycle.
6-2
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initial sequences and random initial vectors normalized
w50.566h.

The distribution of cycle lengthsl found in simulations
shows the expected features~see Fig. 2!: a minimum cycle
length l .2N and no cycle lengthsl that are not divisible by
4. There is a distinct maximum near the minimum cyc
length and a broad distribution that falls off slightly fast
than exponentially for largel. The average ofl scales ap-
proximately like 2.2N, as seen in Fig. 3. The fact that th
largestl that is found scales exponentially withN suggests
that there is an exponential number of different cycles.

FIG. 2. Distribution of period lengths of a CBG withN510 on
linear and logarithmic~inset! scales. The initial weights and se
quence were random. Alll ’s are divisible by 4, andl .2N. Error
bars denote the standard error.

FIG. 3. Average, smallest, and largest cyclesl found in simula-
tions with 1000 random initial conditions for each value ofN. The
full line is an exponential fit to the data forN.9, and the dotted
line denotes the theoretical lower bound ofl .2N for N.3.
05612
o

C. Autocorrelation function and the Bernasconi model

The autocorrelation of the sequence shows some p
liarities, as seen in Fig. 4: As explained, the firstj values
correspond to components ofw. Since w is finite, Cj

t is
bounded for 1< j <N, i.e., it does not grow likeAt as it
would for a random sequence. The values forN, j <2N
show negative correlations that grow linearly witht for even
j, whereas they are compatible with a random sequence
odd j. Between 2N and 3N, correlations are positive for eve
j and 0 for oddj. These effects appear for allN in both the
transient and the cycle, as long as the cycle length is m
larger thanN.

Bit series with low autocorrelations are of interest
mathematics, and have applications in signal processing@9#.
It is therefore interesting to know whether the CBG gen
ates sequences with autocorrelations significantly lower t
for random series. Two measures are commonly used in
literature: for periodic sequences of lengthl, an energy func-
tion ~which is studied in the so-called Bernasconi model
periodic boundary conditions@10#! can be defined by

Hp5(
j 51

l 21

~Cj
l !25(

j 51

l 21 S (
i 51

l

SiSi 1 j D 2

. ~10!

Results on the ground states of this Hamiltonian can
found in Ref.@8#. By trial and error, initial conditions for the
CBG can be found which yield cycles slightly larger tha
2N, for which all value ofCj

l except one are 0. Howeve
even for the best sequences we found,Hp was larger than the
known ground state energies by at least a factor of 2.

The original model does not use periodic boundary c
ditions: in a sequence of lengthp, only the sum overp2 j
different terms with a lag ofj can be calculated. The energ
is therefore given by

Hap5 (
j 51

p21

~Cj
p2 j !2 ~11!

FIG. 4. Autocorrelation functionCj
t /t of a CBG with N550,

averaged overt523106 patterns.
6-3
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~note the summation limits!. The so-called merit factorF
introduced by Golay@11# is defined by

F5
p2

2Hap
. ~12!

A merit factor of 1 is expected for a random sequence; low
autocorrelations yield higherF. The theoretical limit for
largep is conjectured to be aboutF512 @10#, whereas opti-
mization routines typically find sequences with 5,F,9
~see Ref.@12#, and references therein! and exact enumeratio
for smallp suggests limp→`F59.3 for the optimal sequenc
@13#.

To estimate the merit factor of sequences generated by
CBG analytically, we solve Eq.~9! for Cj

t 2, and use the
autocorrelation of the weights given by Eq.~5!:

^~Cj
p2 j !2&5

N2

h2
^wj

021wj
t 222wj

twj
0&

5
p

4
NF12 expS 2

4

p

p2 j

N D G . ~13!

The energy can be expressed as a sum or approximated
integral in continuous variablesa5p/N andb5 j /N. Since

Eq. ~13! only holds for 1< j <N, Cj
p2 j 2

5p2 j must be used
for j .N. We obtain the expression

Hap5 (
j 51

p21

N
p

4 F12 expS 2
4

p

p2 j

N D G
'E

0

a

N2
p

4
$12 exp@2~4/p!~a2b!#%db

5N2
p

4 H a2
p

4 F12 expS 2
4

p
a D G J for j <N

~14!

and

Hap5N2Xp4 H 12
p

4 FexpS 4

p
~12a! D2 expS 2

4

p
a D G J

1
1

2
~a21!2C for j .N. ~15!

The corresponding merit factor is compared to simulation
Fig. 5: Eqs.~14! and ~15! give qualitatively correct results
but differ from the observed values by roughly 10%. T
feedback mechanisms of the CBG cause a faster decay oCj

t

than predicted for random patterns.
We observed in Sec. I A that individual learning rates c

makeCj
t decay faster for somej and slower for others. The

search for a minimalHap can be written as an optimizatio
problem in the continuous functionh(b), where h j
5h( j /N). Solving this problem with a variational approac
one finds that it is sensible to give the last 41% of t
weights a learning rate and norm of zero, and increase
05612
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learning rate continuously toward components with sma
indices. Unfortunately, even this optimization does not i
prove the merit factor beyondF51.74 in theory and̂ F&
51.86 in simulations. This is still a lot worse than the resu
of other optimization methods@10,12#, so the CBG is not a
competitive generator of low-autocorrelation sequenc
Nevertheless, it has some interesting possibilities:

D. Shaping the autocorrelation function

Being able to suppress autocorrelations, the CBG is a
capable of controlling the shape of the autocorrelation fu
tion in the long-time limit. Using Eqs.~6! and~9! in the limit
wherew0→0 and for non-negative learning rates, one c
obtain the inverse relation between the square of the auto
relation function (Cj

t )2 and the corresponding learning ra
h j :

^uCj
t u&5Ap

8
A(

i 51

N

h i

h j
. ~16!

Thus any desired shape of the autocorrelation function
achievable by using the appropriate profile forh j which can
be extracted from Eq.~16!. The high performance of the
CBG as a producer of sequences with specific desired sh
of the autocorrelation function is observed in simulation
This feature of the CBG is demonstrated in Figs. 6 and
where both exponential and polynomial profiles of the au
correlations are successfully generated. The slight deviat
from the target profile are probably due to a violation of t
assumption of random patterns. Simulations are done fo
CBG with 30 input units. The autocorrelations are calcula
for time windows of 100 000 bits, and are averaged o
1000 such successive windows. Checking a wide variety
shapes, the CBG exhibits a decent capability of achieving

FIG. 5. Merit factorF as a function of scaled sequence leng
p/N, compared to Eq.~15!. Error bars denote the standard deviati
of F for N5100, not the standard error.
6-4
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GENERATION OF UNPREDICTABLE TIME SERIES BY . . . PHYSICAL REVIEW E63 056126
expected profiles. It could be used as an alternative me
nism for generating colored binary sequences using lo
rules instead of nonlocal mechanisms auch as Fourier tr
forms.

The limited use of the CBG in generating sequences w
a high merit factor may be related to phase space argum
as seen in Sec. I B; the CBG can still generate exponent
many different time series depending on initial condition
whereas there are very few sequences with the hig
achievable high merit factors~see Ref.@14# for the density of
states with cyclic boundary conditions!. The mechanism of
the CBG allows for manipulation of the autocorrelation fun
tion only if the constraints on the desired sequence are
too strong, such as suppressing all of the elements ofCj on a

FIG. 6. Profile of the average absolute value of the autocorr
tion functionuCj u which was achieved by a CBG withN530 input
units usingh j5 exp(22j/N) ~dashed curve!. The solid curve stands
for the desired profile, uCj u5A exp(j/N), where A
5Ap/8A(e2221)/(e22/N21).

FIG. 7. Profile of the average absolute value of the autocorr
tion functionuCj u which was achieved by a CBG withN530 input
units usingh j5 j /N ~dashed curve!. The solid curve stands for th
desired profile,uCj u52.427Aj /N.
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short time scale. On the other hand, choosing a given sh
for long time averages ofCj still allows for many realiza-
tions of the sequence.

E. Distribution of generated sequences

The structure inCj shows that the CBG does not genera
a random sequence. This becomes more obvious in a h
gram of subsequences generated by the system. Figu
shows the probability distribution of eight-bit substring
from a run of a CBG withN550, encoded as decimal inte
gers. Some strings are strongly suppressed, most notab
~binary 00000000!, 85 ~01010101!, 170~10101010!, and 255
~11111111!. Other sequences with a below-average like
hood also correspond to ‘‘simple’’ sequences, like
~00001111! and 51~00110011!. Continued simple sequence
give high values of some components of the autocorrela
function, which is unlikely as explained above.

The shape of the histogram is the same for allN in both
the transient and the cycle. However,l must be much larger
than the number of bins in the histogram. The amplitude
the deviations from uniform distribution again goes like 1/N.

Ordering histograms in descending rank order often
veals insights into the underlying processes and phase s
structure~see, e.g., Refs.@15,16#!. In our case, the rank or
dered histogram does not show a power law or other univ
sal behavior, as seen in Fig. 9.

One way to explain this histogram is by finding the s
tionary distribution for a biased random walk on a DeBru
graph, as done in Refs.@16,17#: a subsequenceS is followed
by 1 with probabilitypS , and by 0 with probability 12pS . It
is possible to reproduce the histogram of the CBG accura
this way; however, one has to take the transition probabili
pS for each subsequence from simulations of the CBG. Th
is no obvious way of calculating these analytically, and ta
ing random transition probabilities does not reproduce
shape of Fig. 9.

a-

a-

FIG. 8. Histogram of eight-bit subsequences generated b
CBG with N550, averaged over 53106 steps. They axis gives the
probability of a subsequence multiplied by 28 to give an average of
1.
6-5
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The CBG may be considered the simplest case o
sequence-generating perceptron that deterministic
changes its direction. The sequence generated by it, w
complex, has many properties that can be understood at
qualitatively, especially those that can be linked to the au
correlation function. It is not by any standard a satisfyi
random bit sequence, and while results derived from the
sumption of random patterns are usually qualitatively c
rect, the exact values have to be modified.

II. CONFUSED SEQUENCE GENERATOR

The simplest generalization of the CBG to a continuo
perceptron replaces the sign function in Eq.~2! by a continu-
ous sigmoidal function,

St1152erfS b(
j 51

N

wjSt2 j 11D 52erf~bwt
•xt!52erf~bht!,

~17!

wt115wt1
h

N
St11xt, ~18!

where the only new quantity is the amplificationb, andht is
an abbreviation ofwt

•xt. The generation of a time series b
a continuous perceptron with fixed weights was studied i
number of publications@18–20#, in which the system was
called the sequence generator~SGen!. We will call the map-
ping defined by Eqs.~17! and~18! a confused sequence ge
erator~CSG!.

The SGen with fixed weights has a critical amplificati
bc that depends onw, below whichS50 is the attractive
fixed point. Abovebc , the zero solution becomes repulsiv
and the SGen generates a periodic or quasiperiodic time
ries with an attractor dimension of 0 or 1 for most choices

FIG. 9. Frequencies of 12-bit subsequences generated by a
with N550, ordered by rankk and normalized to an average of
~solid line!. The frequencies reproduced by a Markov process
also displayed~dotted line!, but are indistinguishable from the firs
curve.
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w andb @18#. This attractor is robust to noise@19#. The time
series displays chaotic behavior only for very special choi
of w and b ~‘‘fragile chaos’’! if the transfer function is
monotonic, and for generic initial conditions~‘‘robust
chaos’’! only if it is nonmonotonic@20#. We will compare
these properties to those of the CSG.

A. Mean-field solution for w

Similar to the CBG, the weight vector of the CSG pr
forms a directed random walk near the surface of a hyp
sphere of radiusw. Unlike the CBG, the length of the learn
ing steps depends on the magnitude of the output, whic
turn depends onw and the outputs in previous time steps. T
find an approximate solution to this self-consistency pro
lem, we will first ignore correlations between patterns a
weights, and treat the patterns as random and independe
this approach, the inner fieldh is a Gaussian random variab
of mean 0 and variancew2S2, whereS25^St2& t is the mean
square output of the system.

The normw is found by taking the square of Eq.~18!,

wt112
5wt22

2h

N
wt
•xterf~bxt

•wt!1
h2

N2
St2xt

•xt, ~19!

and averaging over the input patterns. The self-overlapx•x is
on the averageNS2, so the fixed point ofw is given by

2^h erf~bh!&5hS4. ~20!

The average on the left hand side can be evaluated, and l
to

4

Ap

bw2S2

A112b2w2S2
5hS4, ~21!

or

w25
pbh2S61hS2ApA161pb2h2S8

16b
. ~22!

Let us now turn toS2. The probability distribution ofS
itself is rather awkward, since it involves inverse error fun
tions, and its slope diverges atS561. However,S2 can be
easily calculated by using the distribution ofh:

^S2&5E
2`

`

erf2~bh!~2pw2S2!21/2expS 2
h2

2w2S2D dh

5
2

p
arcsinS 2b2w2S2

112b2w2S2D . ~23!

Pluggingw2(h,b,S2) from Eq. ~22! into ~23!, and solving
numerically, one obtains a self-consistent solution forS2. A
closer look at the equations reveals that if a new quan
g5hb is introduced, onlyg enters into the equation forS2,
andw2 is of the formw25h2 ŵ2(g), so only one curve mus
be considered. This is intuitive, since a higherh eventually

G

e

6-6
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leads to a higherw, which has the same effect onS2 as
having a smallerw, but multiplying w•x by a higher factor
b.

The map defined by Eqs.~17! and ~18! always has a
trivial solution S50. Only for a sufficiently highg.gc are
the outputs high enough to sustain a nonvanishing solut
Note that S50 is always an attractive solution for allg
,`, but its basin of attraction becomes smaller for largerg.

The numerical solution of Eqs.~22! and ~23! shows that
the system undergoes a saddle-node bifurcation
gc85.785, which is in good agreement with simulation
Above gc , two new fixed points exist, only one of which
stable. While forS2(g) excellent agreement is found be
tween theory and simulation~see Fig. 10!, w2(g) shows
quantitative differences which are caused by correlations
tweenx andw: the mean square overlap^(x•w)2& turns out
to be (1.2260.01)w2S2 instead ofw2S2, as expected for
random patterns. This causes a factor of roughly 0.82
tween the theoretical and observed value ofw2 seen in Fig.
10!. The same factor is found in the CBG. For largeg, S2

goes to 1~as it should, since the system is identical to t
CBG if g5`), and the theoretical prediction forw goes to
Ap/8h, just like in the CBG.

B. CSG of themth degree—CSGm

Multispin interactions were studied in fields like neur
networks@21#, low-autocorrelated sequences@10# and error-
correcting codes@22#. The idea to include multispin interac
tions in our work originated as an attempt to improve t
suppression of the autocorrelation function achieved by
CBG. The existence of four-spin interactions in the B
nasconi model implies that a CBG with multispin interacti
might be useful in the construction of low-autocorrelated
quences. However, it turns out that a CBG with multisp
interactions suppresses the corresponding multispin cor
tions instead.

In this section we apply multispin interactions to the CS
and define the CSGm, namely, a CSG in which each weigh

FIG. 10. Mean-field solution of the CBG, compared to simu
tions with N5400.
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componentwj connects the corresponding input unitxj not
only to the output but also to otherm22 additional input
units.

AssigningAj ,i i 51,..,m22 to be the labels of them22
additional input units participating in thej th interaction, the
dynamics of a CSGm is given by

St1152erfS b(
j 51

N

wjS
t112 j )

i 51

m22

St112Aj ,i D , ~24!

wj
t115wj

t1
h

N
St11St112 j )

i 51

m22

St112Aj ,i. ~25!

A similar calculation under the same assumptions used
yield the solution of the original CSG gives the followin
general set of equations:

w25
pbh2S2(m11)1hS2ApA161pb2h2S4m

16b
, ~26!

^S2&5
2

p
arcsinS 2b2w2S2(m21)

112b2w2S2(m21)D . ~27!

Numerically solving Eqs.~26! and~27! for a large range ofm
values, both the bifurcation pointgc and the first nonzero
values ofS2 and w2 were found to increase withm. For
m→`, one can easily show thatgc→`, while for the non-
vanishing solutionw2→1 andS2→1 . Aiming to study the
asymptotic behavior ofS2 andgc in the largem limit, we set
S2512e, and find thate must decay to zero at least as 1/m
in order for a nonzero solution to exist. This inverse relati
betweene andm derivesSm terms, since (12e)m→0 unless
e,1/m. InsertingS2512e into Eqs.~26! and~27!, and ex-
panding the resulting expression to a power series ine, the
inverse relation betweene andm leads to linear increment o
gc as a function ofm. The numerical solutions of the syste
in the large-m regime support the linear behavior ofgc as
derived from the aforementioned analysis~Fig. 11!.

-
FIG. 11. The linear relation betweengc andm derived from the

numerical solution of Eqs.~26! and ~27!.
6-7
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Figure 12 describes the numerical solution with respec
the simulation results for a system withm53. This harmony
between analytics and simulations is observed for largerm as
well.

C. Autocorrelation function

Relation~9!, that links the autocorrelation function to th
weights, still holds for the CSG. Since the weight vector
bounded in the CSG as well, the same argument can be g
for the first suppression of the firstN values of the autocor
relation function. Correspondingly,Cj

p/p is almost indistin-
guishable from that of the CBG shown in Fig. 4.

D. Cycles and attractors

The CSG can be seen as a nonlinear mapping that m
the vectorxt

% wt onto xt11
% wt11. This is in contrast to

previous work on the SGen@22#, where the weights were
fixed and could be considered parameters of the model ra
than dynamic variables. The only real control parameter
this mapping isg. Since both the sequence and the weig
now live in a high-dimensional space of real numbers,
CBG can display a wide variety of behaviors, depending
N andg:

For g,gc , the zero solution is the only attractor, and t
system will quickly reachxt50 and stop developing. Forg
slightly abovegc , an irregular-looking time series with th
statistical properties calculated in Sec. II A, and displayed
Fig. 10, is generated. However, the zero solution is still
tractive, and after some time the system will drift close to
and stay there, i.e., the irregular behavior is due to a cha
transient rather than a proper chaotic attractor.

The survival time on the transient increases dramatic
with increasingN andg. It is hard to decide from numerica
results whether the average survival time^ts& diverges with a
power law (̂ ts&}ug2gdu2a), as one usually finds in sce
narios where a chaotic transient becomes a chaotic attra
@23#, or whether^ts& increases exponentially withg. In ei-

FIG. 12. Mean-field solution of the CSG3, compared to simu
tions with N52000.
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ther case, the system shows chaotic behavior for sufficie
long times to obtain stable numerical results—for examp
for N520 andg57.0, the average survival time is of th
order of 106 steps.

If g is larger than some critical value that depends onN,
the chaotic transient can eventually end in a cycle tha
related to a possible cycle of the discrete CBG. By ‘‘relate
we mean thatSt in the CSG is very close to61, and that
clipping the sequence to the nearest value of61 would give
the equivalent attractor of the CBG. More different cycl
become stable with higherg; however, the cycle lengths ar
usually of order 2N—short cycles are apparently more like
to become stable than cycles whose length is of order 2N.

At amplificationsg slightly below the lowestg for which
the first cycle becomes stable for for a givenN, intermittent
behavior is observed: bothSt andwt stay near a cycle for an
extended number of steps~typically several thousand step
for N56), before returning to chaotic behavior for a simil
time. An example of this is given in Fig. 13.

E. Stability and Lyapunov exponents

The term ‘‘chaotic’’ was used in Sec. II D to describe th
irregular time series generated by the CBG. We will no
show that the system is in fact chaotic in the strict sense

The sensitivity of trajectories of the map@Eqs. ~17! and
~18!# to small changes in the initial conditions can be tes
by calculating the eigenvalues of the Jacobi matrix:

M t5S ]xi
t1

]xj
t

]xi
t11

]wj
t

]wi
t11

]xi
t

]wi
t11

]wj
t

D . ~28!

This is to be understood as a 2N32N matrix with indicesi
and j running from 1 toN. The entries of this matrix are o
the following forms:

-

FIG. 13. Example of intermittent behavior forN56 andg58.
From top to bottom: outputSt, norm of weightswt and largest
‘‘one-step Lyapunov exponent’’ max(ln(uLu) ~see Sec. II E!.
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]x1
t11

]xj
t

52bwj
t 2

Ap
exp~2b2h2!,

]xi
t11

]xj
t

5d i 21,j for i 52, . . . ,N,

]x1
t11

]wj
t

52bxj
t 2

Ap
exp~2b2h2!, ~29!

]xi
t11

]wj
t

50 for i 52, . . . ,N,

]wi
j 11

]xj
t11

52
h

N
erf~bh!d i , j2

h

N
bwj

txi
t 2

Ap
exp~2b2h2!,

]wi
t11

]wj
t

5d i , j2
h

N
bxj

txi
t exp~2b2h2!.

If ubhu is large and the transfer function is saturated,
exponential terms in Eq.~29! are negligible. In that case, th
upper left section ofM is occupied only on the first lowe
off-diagonal; the lower right section is theN3N unity ma-
trix. Since the upper right section is identically 0, the low
left part does not enter into the calculation of the eigenval
either.

This simplified matrix hasN eigenvaluesL50 and N
eigenvaluesL51. The eigenvectors of the latter span t
space of weight vectors, where small changes towt are trans-
ferred unmodified towt11. The eigenvaluesL50 all have
the same eigenvector, whose only nonvanishing compo
is xN , the component of the sequence vector that is rota
out att11. This means that the eigenvectors do not span
whole space, and that thus the eigenvalues are not a rel
measure of the propagation of a disturbance in the syste

If ubhu is small enough for the exponential terms to ha
an appreciable effect, the effect on the eigenvalues is
easy to calculate. By using values ofx andw taken from a
run of the simulation, and numerically calculating the eige
values, we find that typically one of theL50 eigenvalues is
changed drastically, and may have an absolute valueuLu
.1. This corresponds to a strong susceptibility of the new
generated sequence componentS1 on small changes inw or
x. The other eigenvalues only undergo small correctio
corresponding to the feedback of the new component to
weights.

During the regular phases of intermittent behavior,
largest eigenvalues of the one-step matrix are significa
smaller than during the chaotic bursts~see Fig. 13!—
corresponding to sequence values that are close toS561,
and thus a nearly saturated transfer function.

To find the Lyapunov exponents of the map~see, e.g.,
Ref. @24#!, it is necessary to consider the development o
small perturbation over a long time, i.e., to calculate
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eigenvaluesL i
T of ) t51

T M t ~of course, the trajectory is de
termined using the full nonlinear map!. The Lyapunov expo-
nents are then defined as

l i5 lim
T→`

~1/T!lnuL i
Tu. ~30!

The straightforward calculation of the product of Jacobi m
trices brings many numerical problems which can be elim
nated by applying a Gram-Schmidt orthonormalization p
cedure to the columns of the product matrix in regu
distances, as described in Ref.@25#. With this procedure, it is
possible to average overT.100N and obtain numerically
stable results. The largest Lyapunov exponent is displaye
Fig. 14. Typically, there areN/2 positive exponents.

The Kaplan-Yorke conjecture@26# states that there is a
connection between the dimensionD of a attractor of a map
and the spectrum of Lyapunov exponents, which here
assumed to be ordered (l1>l2>•••>l2N),

DKY5k1(
i 51

k

l i /ulk11u, ~31!

wherek is the value for which( i 51
k l i.0 and( i 51

k11l i,0.
Applying this to the spectrum of exponents derived from E
~30! gives an average attractor dimension between 1.1N and
1.2N, depending slightly ong.

An alternative method for measuring the large
Lyapunov exponent is to start two trajectories with infinite
mally different initial conditions, and propagate both of the
using the nonlinear map. In regular intervals, we measure
distance between the trajectories, store it, and reset the
tance to the initial value while keeping the direction of t
distance vector. The advantage of this method is that it
quires only O(N) calculations per time step, rather tha
O(N2) as in the previous method, allowing one to go to
much higher value ofN.

FIG. 14. Lyapunov exponents measured from the time deve
ment of perturbations, and from iteratively multiplying the Jaco
matrix @Eq. ~30!#, for g58 and 12.
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The results forl1 are also displayed in Fig. 14: the value
gained by the two methods agree well within the numeri
errors. For largeN, lmax decreases with 1/N, i.e., perturba-
tions grow on thea time scale of online learning.

III. SUMMARY

In this paper, we have studied the properties of a ti
sequence generated by a perceptron which learns the o
site of its own prediction. In the case of a simple perceptr
some properties are accessible analytically through the a
cation of online learning techniques, and through the conn
tion between the weights and the autocorrelation function
the sequence. The distribution of learning rates among
weight components has a decisive influence on the statis
properties of the generated sequence, and allows for
quences with a wide variety of autocorrelation shapes.

Due to the discrete nature of the sequence and the le
ing algorithm, cycles of the system are inevitable. We fi
that their typical length, as well as that of the transient, gr
exponentially with the system sizeN.

A histogram of substrings of the generated sequence
veals that the sequence has significant deviations from
domness, although the deviations decrease with increasinN.

Replacing the sign function in the update rule by a co
tinuous sigmoidal function changes many of these results
,

ys

on
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vanishing solution now becomes possible; only for su
ciently large values of the rescaled amplificationg can non-
trivial solutions survive. The criticalgc can be calculated in
a mean-field online learning calculation.

Since both sequence and weights are now continuo
cycles vanish for low values ofg, and the trajectory is a
chaotic sequence. The largest Lyapunov exponent scales
1/N for large N; the spectrum of Lyapunov exponents su
gests high-dimensional chaos.

At least some cycles of the CBG reemerge as stable fi
points of the CGS above a criticalg that is different for each
attractor. Slightly below the smallest criticalg for a givenN,
an intermittent behavior is observed.

Compared to the behavior of sequence-generating per
trons with fixed weights, the sequence generated with cha
ing weights shows more a complex behavior: longer cyc
more randomness, and chaotic as opposed to quasiper
behavior. It seems likely that this tendency also holds
other algorithms in which the weights keep changing.
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